Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways.
نویسندگان
چکیده
Xanthine oxidoreductase (XOR) plays a prominent role in acute lung injury because of its ability to generate reactive oxygen species. We investigated the role of XOR in ventilator-induced lung injury (VILI). Male C57BL/6J mice were assigned to spontaneous ventilation (sham) or mechanical ventilation (MV) with low (7 ml/kg) and high tidal volume (20 ml/kg) for 2 h after which lung XOR activity and expression were measured and the effect of the specific XOR inhibitor allopurinol on pulmonary vascular leakage was examined. In separate experiments, rat pulmonary microvascular endothelial cells (RPMECs) were exposed to cyclic stretch (5% and 18% elongation, 20 cycles/min) for 2 h before intracellular XOR activity measurement. Lung XOR activity was significantly increased at 2 h of MV without changes in XOR expression. There was evidence of p38 MAP kinase, ERK1/2, and ERK5 phosphorylation, but no change in JNK phosphorylation. Evans blue dye extravasation and bronchoalveolar lavage protein concentration were significantly increased in response to MV, changes that were significantly attenuated by pretreatment with allopurinol. Cyclic stretch of RPMECs also caused MAP kinase phosphorylation and a 1.7-fold increase in XOR activity, which was completely abrogated by pretreatment of the cells with specific MAP kinase inhibitors. We conclude that XOR enzymatic activity is significantly increased by mechanical stress via activation of p38 MAP kinase and ERK and plays a critical role in the pathogenesis of pulmonary edema associated with VILI.
منابع مشابه
Alveolar cell apoptosis is dependent on p38 MAP kinase-mediated activation of xanthine oxidoreductase in ventilator-induced lung injury.
Signaling via p38 MAP kinase has been implicated in the mechanotransduction associated with mechanical stress and ventilator-induced lung injury (VILI). However, the critical downstream mediators of alveolar injury remain incompletely defined. We provide evidence that high-tidal volume mechanical ventilation (HVt MV) rapidly activates caspases within the lung, resulting in increased alveolar ce...
متن کاملTRANSLATIONAL PHYSIOLOGY Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways
Raja-Elie E. Abdulnour, Xinqi Peng, Jay H. Finigan, Eugenia J. Han, Emile J. Hasan, Konstantin G. Birukov, Sekhar P. Reddy, James E. Watkins III, Usamah S. Kayyali, Joe G. N. Garcia, Rubin M. Tuder, and Paul M. Hassoun Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Environmental Health Sciences, Bloomberg School of Public Health, and Division of Cardiopu...
متن کاملEffects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity in Oxonate-Induced Hyperuricemic Rats
Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in norma...
متن کاملEffects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity in Oxonate-Induced Hyperuricemic Rats
Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in norma...
متن کاملMechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes.
We have previously shown that stretching cardiac myocytes evokes activation of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and 90-kD ribosomal S6 kinase (p90rsk). To clarify the signal transduction pathways from external mechanical stress to nuclear gene expression in stretch-induced cardiac hypertrophy, we have elucidated protein kinase cascade of phosphorylation by exam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 291 3 شماره
صفحات -
تاریخ انتشار 2006